前往化源商城

NPG Asia Materials 2017-07-01

Full picture discovery for mixed-fluorine anion effects on high-voltage spinel lithium nickel manganese oxide cathodes

Dae-wook Kim, Hiromasa Shiiba, Nobuyuki Zettsu, Tetsuya Yamada, Takeshi Kimijima, Gabriel Sánchez-Santolino, Ryo Ishikawa, Yuichi Ikuhara, Katsuya Teshima

文献索引:10.1038/am.2017.90

全文:HTML全文

摘要

Small amounts of fluorine substituting for oxygen deficiencies could reduce Mn dissolution, enhancing the cyclability in spinel-type lithium nickel manganese oxides (LiNi0.5Mn1.5O4). Fluorine anion incorporation simultaneously enhances the C-rate capability and specific capacity fading. We used experimental and theoretical approaches to obtain a full picture of the mixed-anion effects for LiNi0.5Mn1.5O4−xFx cathode materials. The fluorine anion reduced the activation barrier for lithium-ion hopping along the most energetically preferable 8a-16c-8a route, enhancing the C-rate capability. Simultaneously, the coordination bond of the linear F−–Mn3+–F− (Mn@2F diagonal) arrangement increased the oxidation potential to 5.1 V (vs Li+/Li). This hampered full extraction of Li+ from the spinel lattice, which was triggered by the oxidation of Mn3+ below the cutoff voltage (3.5–4.8 V (vs Li+/Li)), leading to a capacity loss.