L. A. Shaw, C. M. Spadaccini, and J. B. Hopkins
文献索引:10.1364/OL.42.002862
全文:HTML全文
The aim of this Letter is to introduce a new optical tweezers approach, called scanning holographic optical tweezers (SHOT), which drastically increases the working area (WA) of the holographic-optical tweezers (HOT) approach, while maintaining tightly focused laser traps. A 12-fold increase in the WA is demonstrated. The SHOT approach achieves its utility by combining the large WA of the scanning optical tweezers (SOT) approach with the flexibility of the HOT approach for simultaneously moving differently structured optical traps in and out of the focal plane. This Letter also demonstrates a new heuristic control algorithm for combining the functionality of the SOT and HOT approaches to efficiently allocate the available laser power among a large number of traps. The proposed approach shows promise for substantially increasing the number of particles that can be handled simultaneously, which would enable optical tweezers additive fabrication technologies to rapidly assemble microgranular materials and structures in reasonable build times.
|
End-pumped Nd:YVO4 laser with reduced thermal lensing via th...
2017-07-20 [10.1364/OL.42.002910] |
|
Mid-infrared beam splitter for ultrashort pulses
2017-07-20 [10.1364/OL.42.002918] |
|
Piston alignment for a segmented-aperture imaging system by ...
2017-07-20 [10.1364/OL.42.002922] |
|
Controllable single-photon nonreciprocal propagation between...
2017-07-20 [10.1364/OL.42.002914] |
|
Anomalous dispersion engineering of co-sputtering Ag-AZO hyb...
2017-07-19 [10.1364/OL.42.002894] |
首页 |
期刊大全 |
MSDS查询 |
化工产品分类 |
生物活性化合物 |
关于我们 |
免责声明:知识产权问题请联系 service1@chemsrc.com
Copyright © 2026 ChemSrc All Rights Reserved