Xin Yu, Lizhi Dong, Boheng Lai, Ping Yang, Shanqiu Chen, Wenjin Liu, Shuai Wang, Guomao Tang, Jisi Qiu, Zhijun Kang, Yueliang Liu, Hao Liu, Yong Liu, Zhongwei Fan, and Bing Xu
文献索引:10.1364/OL.42.002730
全文:HTML全文
In this Letter, we present an adaptive aberration correction system to simultaneously compensate for aberrations and reshaping the beams. A low-order aberration corrector is adapted. In this corrector, four lenses are mounted on a motorized rail, whose positions can be obtained using a ray tracing method based on the beam parameters detected by a wavefront sensor. After automatic correction, the PV value of the wavefront is reduced from 26.47 to 1.91 μm, and the beam quality β is improved from 18.42 to 2.86 times that of the diffraction limit. After further correction with a deformable mirror, the PV value of the wavefront is less than 0.45 μm, and the beam quality is 1.64 times that of the diffraction limit. To the best of our knowledge, this is the highest performance from such a high-power, high-pulse repetition rate Nd:YAG solid-state laser ever built.
|
End-pumped Nd:YVO4 laser with reduced thermal lensing via th...
2017-07-20 [10.1364/OL.42.002910] |
|
Mid-infrared beam splitter for ultrashort pulses
2017-07-20 [10.1364/OL.42.002918] |
|
Piston alignment for a segmented-aperture imaging system by ...
2017-07-20 [10.1364/OL.42.002922] |
|
Controllable single-photon nonreciprocal propagation between...
2017-07-20 [10.1364/OL.42.002914] |
|
Anomalous dispersion engineering of co-sputtering Ag-AZO hyb...
2017-07-19 [10.1364/OL.42.002894] |
首页 |
期刊大全 |
MSDS查询 |
化工产品分类 |
生物活性化合物 |
关于我们 |
免责声明:知识产权问题请联系 service1@chemsrc.com
Copyright © 2026 ChemSrc All Rights Reserved