Yueqiang Ma, Yanjun Zhang, Ziwang Yu, Yibin Huang, Chi Zhang
文献索引:10.1016/j.ijheatmasstransfer.2017.11.102
全文:HTML全文
Heat transfer coefficient is a significant parameter that can describe the characteristics of the heat transfer process of fluid through fracture surface and can be used to predict hot water production from an enhanced geothermal reservoir and conventional geothermal systems. This study adopted numerical and experimental approaches that produce specimen with different rough surfaces through a 3D printing technique to improve the understanding of the heat transfer characteristics of water flowing through rough fractures and the distribution of local heat transfer coefficient along the flow direction. Results indicate that the local heat transfer coefficient increases to the maximum at the inlet and then decreases to a relatively constant value further along the flow direction. In addition, fracture surface tortuosity influences the local fluctuations.
Theoretical and numerical analysis on phase change materials...
2017-12-01 [10.1016/j.ijheatmasstransfer.2017.11.124] |
Experimental and analytical study on nucleate pool boiling h...
2017-12-01 [10.1016/j.ijheatmasstransfer.2017.11.143] |
A mesh-free Monte-Carlo method for simulation of three-dimen...
2017-12-01 [10.1016/j.ijheatmasstransfer.2017.11.140] |
Similarity type of general solution for one-dimensional heat...
2017-12-01 [10.1016/j.ijheatmasstransfer.2017.11.131] |
Light field imaging analysis of flame radiative properties b...
2017-11-28 [10.1016/j.ijheatmasstransfer.2017.11.122] |
首页 |
期刊大全 |
MSDS查询 |
化工产品分类 |
生物活性化合物 |
关于我们 |
免责声明:知识产权问题请联系 service1@chemsrc.com
Copyright © 2024 ChemSrc All Rights Reserved