A. Troncoso, P. Ribera, G. Asencio-Cortés, I. Vega, D. Gallego
文献索引:10.1016/j.envsoft.2017.11.024
全文:HTML全文
Monsoons have been widely studied in the literature due to their climatic impact related to precipitation and temperature over different regions around the world. In this work, data mining techniques, namely imbalanced classification techniques, are proposed in order to check the capability of climate indices to capture and forecast the evolution of the Western North Pacific Summer Monsoon. Thus, the main goal is to predict if the monsoon will be an extreme monsoon for a temporal horizon of a month. Firstly, a new monthly index of the monsoon related to its intensity has been generated. Later, the problem of forecasting has been transformed into a binary imbalanced classification problem and a set of representative techniques, such as models based on trees, models based on rules, black box models and ensemble techniques, are applied to obtain the forecasts. From the results obtained, it can be concluded that the methodology proposed here reports promising results according to the quality measures evaluated and predicts extreme monsoons for a temporal horizon of a month with a high accuracy.
Creating extreme weather time series through a quantile regr...
2018-03-21 [10.1016/j.envsoft.2018.03.007] |
Hybrid SOM+k-Means clustering to improve planning, operation...
2018-03-08 [10.1016/j.envsoft.2018.02.013] |
Modelling background air pollution exposure in urban environ...
2018-02-26 [10.1016/j.envsoft.2018.02.011] |
Environmental data stream mining through a case-based stocha...
2018-02-16 [10.1016/j.envsoft.2018.01.017] |
Inverse modelling of snow depths
2018-02-09 [10.1016/j.envsoft.2018.01.010] |
首页 |
期刊大全 |
MSDS查询 |
化工产品分类 |
生物活性化合物 |
关于我们 |
免责声明:知识产权问题请联系 service1@chemsrc.com
Copyright © 2024 ChemSrc All Rights Reserved