Jiabin Xie, Wenying Dong, Rui Liu, Yuming Wang, Yubo Li
文献索引:https://doi.org/10.1080/17435390.2017.1415389
全文:HTML全文
Citrate-modified silver nanoparticles (AgNP-cit) have received extensive attention due to their excellent antimicrobial properties. However, these particles tend to migrate in vivo, thereby entering the blood circulatory system in granular form and accumulating in the liver, causing toxic reactions. However, the mechanism underlying AgNP-cit toxicity is not yet clear. Thus, we adopted a tandem mass tag (TMT)-labeled quantitative proteomics and metabolomics approach to identify proteins and small molecule metabolites associated with AgNP-cit-induced liver damage and constructed interaction networks between the differentially expressed proteins and metabolites to explain the AgNP-cit toxicity mechanism. AgNP-cit resulted in abnormal purine metabolism mainly by affecting xanthine and other key metabolites along with pyruvate kinase and other bodily proteins, leading to oxidative stress. AgNP-cit regulated the metabolism of amino acids and glycerol phospholipids through glycerol phospholipids, CYP450 enzymes and other key proteins, causing liver inflammation. Via alanine, isoleucine, L-serine dehydratase/L-threonine deaminase and other proteins, AgNP-cit altered the metabolism of glycine, serine and threonine, cysteine and methionine, affecting oxidation and deamination, and ultimately leading to liver damage. This work clearly explains toxic reactions induced by AgNP-cit from three perspectives, oxidative stress, inflammatory response, and oxidation and deamination, thus providing an experimental basis for the safe application of nanomaterials.
|
Nanosilver and the microbiological activity of the particula...
2018-02-15 [https://doi.org/10.1080/17435390.2018.1434910] |
|
Metabolomics reveals the depletion of intracellular metaboli...
2018-02-02 [https://doi.org/10.1080/17435390.2018.1432779] |
|
Comparative toxicity of three differently shaped carbon nano...
2018-02-01 [https://doi.org/10.1080/17435390.2018.1430258] |
|
Short-term inhalation study of graphene oxide nanoplates
2018-02-01 [https://doi.org/10.1080/17435390.2018.1431318] |
|
Copper oxide nanoparticles induce collagen deposition via TG...
2018-01-31 [https://doi.org/10.1080/17435390.2018.1432778] |
首页 |
期刊大全 |
MSDS查询 |
化工产品分类 |
生物活性化合物 |
关于我们 |
免责声明:知识产权问题请联系 service1@chemsrc.com
Copyright © 2026 ChemSrc All Rights Reserved