前往化源商城

Solar Energy Materials and Solar Cells 2018-02-09

One-pot synthesis of light-driven polymeric composite phase change materials based on N-doped porous carbon for enhanced latent heat storage capacity and thermal conductivity

Dimberu G. Atinafu, Wenjun Dong, Xiubing Huang, Hongyi Gao, Jingjing Wang, Mu Yang, Ge Wang

文献索引:10.1016/j.solmat.2018.01.035

全文:HTML全文

摘要

10.1016/j.solmat.2018.01.035图片

Light-driven, improved thermal conductivity and effective phase change enthalpy of polymeric composite material was prepared by one-pot synthesis approach based on the introduction of chromophoric polymer phase change material in nitrogen-doped porous carbon (NPC). Various characterization techniques were employed to investigate the thermal and structural properties of as-synthesized samples. The composite exhibited a light-to-heat conversion capacity of 72.1% owing to the introduction of environmental friendly and commercially available functional dye molecule in the polymer matrix. In addition, the composite achieved large energy storage efficiency per unit mass up to 180.3 J/g with high crystallinity, close to the maximum value since then documented for cross-linked polymeric composites, as well the composite achieving a thermal conductivity up to 178.3% with low porous carbon addition. The superior thermal storage performance could be ascribed to the advantages of NPC porous structure and interaction with hard segment results free phase change materials (PCMs) in a certain degree and used for high energy storage efficiency. Likewise, the composite revealed stable thermal performance with time saving strategy. This investigation gives an outlook for the synergistic improvement of thermal conductivity, solar-to-heat conversion capacity and latent heat of solid-solid PCMs.