Haochen Liu, Shang Li, Wei Chen, Dan Wang, Chen Li, Dan Wu, Junjie Hao, Ziming Zhou, Xinzhong Wang, Kai Wang
文献索引:10.1016/j.solmat.2018.01.029
全文:HTML全文
Luminescent solar concentrator (LSC) integrated with c-Si photovoltaic cells (PV cells) in building integrated photovoltaics (BIPV) could grow up to be an important element of our life for energy harvest in the future. Heavy metal free quantum dots (QDs) are promising for LSC applications, which can be controlled to possess effective large Stokes Shift and low reabsorption of emission that benefit their applications in BIPV. In our work, different amount and size of SiO2 particles were added to CuInS2/ZnS QDs based LSCs to realize highly efficient scattering enhanced LSC (S-LSC) devices. Since SiO2 particles induced scattering effect, we achieved a power conversion efficiencies (PCE) of 4.20%, which showed an improvement of 60.3% compared with the pure QDs based LSC without SiO2 particles. This study suggests a new method of scattering enhancement to realize better performance for LSC.
Analysis of silicon wafer surface preparation for heterojunc...
2018-03-12 [10.1016/j.solmat.2018.03.006] |
Exploration of graphene oxide nanoribbons as excellent elect...
2018-03-06 [10.1016/j.solmat.2018.01.039] |
Fatigue crack growth in Silicon solar cells and hysteretic b...
2018-02-23 [10.1016/j.solmat.2018.02.016] |
Advanced light management techniques for two-terminal hybrid...
2018-02-23 [10.1016/j.solmat.2018.02.017] |
Development of porous TiO2 nanofibers by solvosonication pro...
2018-02-13 [10.1016/j.solmat.2018.01.042] |
首页 |
期刊大全 |
MSDS查询 |
化工产品分类 |
生物活性化合物 |
关于我们 |
免责声明:知识产权问题请联系 service1@chemsrc.com
Copyright © 2024 ChemSrc All Rights Reserved