Dario Di Carlo Rasi; Koen H. Hendriks; Gaël H. L. Heintges; Giulio Simone; Gerwin H. Gelinck; Veronique S. Gevaerts; Ronn Andriessen; Geert Pirotte; Wouter Maes; Weiwei Li; Martijn M. Wienk; René A. J. Janssen
文献索引:10.1002/solr.201800018
全文:HTML全文
The interconnection layer (ICL) that connects adjacent subcells electrically and optically in solution‐processed multi‐junction polymer solar cells must meet functional requirements in terms of work functions, conductivity, and transparency, but also be compatible with the multiple layer stack in terms of processing and deposition conditions. Using a combination of poly(3,4‐ethylenedioxythiophene):polystyrene sulfonate, diluted in near azeotropic water/n‐propanol dispersions as hole transport layer, and ZnO nanoparticles, dispersed in isoamyl alcohol as electron transport layer, a novel, versatile ICL has been developed for solution‐processed tandem and triple‐junction solar cells in an n‐i‐p architecture. The ICL has been incorporated in six different tandem cells and three different triple‐junction solar cells, employing a range of different polymer‐fullerene photoactive layers. The new ICL provided an essentially lossless contact in each case, without the need of adjusting the formulations or deposition conditions. The approach permitted realizing complex devices in good yields, providing a power conversion efficiency up to 10%.
1T′‐Mo1−xWxS2/CdS Heterostructure Enabling Robust Photocatal...
2018-03-30 [10.1002/solr.201800032] |
Semitransparent CH3NH3PbI3 Films Achieved by Solvent Enginee...
2018-03-30 [10.1002/solr.201700222] |
10.3% Efficient CuIn(S,Se)2 Solar Cells from DMF Molecular S...
2018-03-30 [10.1002/solr.201800044] |
Endotaxial Growth of [100]‐Oriented TaON Films on LiTaO3 Sin...
2018-03-25 [10.1002/solr.201700243] |
Band‐Engineered PbS Nanoparticles in CH3NH3PbI3 Solar Cells ...
2018-03-24 [10.1002/solr.201800012] |
首页 |
期刊大全 |
MSDS查询 |
化工产品分类 |
生物活性化合物 |
关于我们 |
免责声明:知识产权问题请联系 service1@chemsrc.com
Copyright © 2024 ChemSrc All Rights Reserved