Se Youn Cho; Minjee Kang; Jaewon Choi; Min Eui Lee; Hyeon Ji Yoon; Hae Jin Kim; Cecilia Leal; Sungho Lee; Hyoung‐Joon Jin; Young Soo Yun
文献索引:10.1002/smll.201703043
全文:HTML全文
Na‐ion cointercalation in the graphite host structure in a glyme‐based electrolyte represents a new possibility for using carbon‐based materials (CMs) as anodes for Na‐ion storage. However, local microstructures and nanoscale morphological features in CMs affect their electrochemical performances; they require intensive studies to achieve high levels of Na‐ion storage performances. Here, pyrolytic carbon nanosheets (PCNs) composed of multitudinous graphitic nanocrystals are prepared from renewable bioresources by heating. In particular, PCN‐2800 prepared by heating at 2800 °C has a distinctive sp2 carbon bonding nature, crystalline domain size of ≈44.2 Å, and high electrical conductivity of ≈320 S cm−1, presenting significantly high rate capability at 600 C (60 A g−1) and stable cycling behaviors over 40 000 cycles as an anode for Na‐ion storage. The results of this study show the unusual graphitization behaviors of a char‐type carbon precursor and exceptionally high rate and cycling performances of the resulting graphitic material, PCN‐2800, even surpassing those of supercapacitors.
Design and Realization of 3D Printed AFM Probes
2018-03-30 [10.1002/smll.201800162] |
Direct‐Patterning SWCNTs Using Dip Pen Nanolithography for S...
2018-03-25 [10.1002/smll.201800247] |
Nanostructuring Lipophilic Dyes in Water Using Stable Vesicl...
2018-03-24 [10.1002/smll.201703851] |
Formation of Metal Nanoparticles Directly from Bulk Sources ...
2018-03-24 [10.1002/smll.201703615] |
The State and Challenges of Anode Materials Based on Convers...
2018-03-24 [10.1002/smll.201703671] |
首页 |
期刊大全 |
MSDS查询 |
化工产品分类 |
生物活性化合物 |
关于我们 |
免责声明:知识产权问题请联系 service1@chemsrc.com
Copyright © 2024 ChemSrc All Rights Reserved