Chengbin Jin, Ouwei Sheng, Wenkui Zhang, Jianmin Luo, Huadong Yuan, Tao Yang, Hui Huang, Yongping Gan, Yang Xia, Chu Liang, Jun Zhang, Xinyong Tao
文献索引:10.1016/j.ensm.2018.04.001
全文:HTML全文
Lithium sulfur (Li-S) battery has been regarded as the promising energy storage device. However, this technology faces great challenges from both anode and cathode, which are mainly caused by the nature of materials. Here, we report a kind of multifunctional carbon derived from biomass like rice husk for optimizing both lithium (Li) metal anode and sulfur (S) cathode for Li-S batteries. It has been proved that the surface functionalized rice husk derived carbon could effectively achieve the controllable deposition of Li. Notably, the nucleation overpotential is reduced and the Coulombic efficiency is also improved. As for the cathode, the biomass carbon with high specific surface area and natural SiO2 nanoparticles is benificial for confining sulfur and sulfides. As a result, when the modified Li metal anode paired with carbon/sulfur composite, the battery delivers improved discharge capacity, rate capability and cycling stability. Moreover, the overpotential between charge and discharge process in Li-S batteries is obviously lowered compared with bare Li foil. This novel and straightforward design via employing sustainable biomass for constructing both anode and cathode materials may do great help to achieve the commericialization of Li-S batteries.
Perspectives for restraining harsh lithium dendrite growth: ...
2018-04-03 [10.1016/j.ensm.2018.03.024] |
Self-template construction of mesoporous silicon submicrocub...
2018-04-02 [10.1016/j.ensm.2018.03.025] |
Controlling the sustainability and shape change of the zinc ...
2018-03-31 [10.1016/j.ensm.2018.03.023] |
Defect-Rich Carbon Fiber Electrocatalysts with Porous Graphe...
2018-03-27 [10.1016/j.ensm.2018.03.022] |
Superior Na-Ion Storage Achieved by Ti Substitution in Na3V2...
2018-03-27 [10.1016/j.ensm.2018.03.021] |
首页 |
期刊大全 |
MSDS查询 |
化工产品分类 |
生物活性化合物 |
关于我们 |
免责声明:知识产权问题请联系 service1@chemsrc.com
Copyright © 2024 ChemSrc All Rights Reserved