Alex de Mendoza, Amandine Bonnet, Dulce B. Vargas-Landin, Nanjing Ji, Fei Hong, Feng Yang, Ling Li, Koichi Hori, Jahnvi Pflueger, Sam Buckberry, Hiroyuki Ohta, Nedeljka Rosic, Pascale Lesage, Senjie Lin, Ryan Lister
文献索引:10.1038/s41467-018-03724-9
全文:HTML全文
Transposable elements are in a constant arms race with the silencing mechanisms of their host genomes. One silencing mechanism commonly used by many eukaryotes is dependent on cytosine methylation, a covalent modification of DNA deposited by C5 cytosine methyltransferases (DNMTs). Here, we report how two distantly related eukaryotic lineages, dinoflagellates and charophytes, have independently incorporated DNMTs into the coding regions of distinct retrotransposon classes. Concomitantly, we show that dinoflagellates of the genus Symbiodinium have evolved cytosine methylation patterns unlike any other eukaryote, with most of the genome methylated at CG dinucleotides. Finally, we demonstrate the ability of retrotransposon DNMTs to methylate CGs de novo, suggesting that retrotransposons could self-methylate retrotranscribed DNA. Together, this is an example of how retrotransposons incorporate host-derived genes involved in DNA methylation. In some cases, this event could have implications for the composition and regulation of the host epigenomic environment.
Genome-wide association study identifies susceptibility loci...
2018-04-09 [10.1038/s41467-018-03178-z] |
Endocycle-related tubular cell hypertrophy and progenitor pr...
2018-04-09 [10.1038/s41467-018-03753-4] |
Designable ultra-smooth ultra-thin solid-electrolyte interph...
2018-04-09 [10.1038/s41467-018-03466-8] |
Stimulus dependent diversity and stereotypy in the output of...
2018-04-09 [10.1038/s41467-018-03837-1] |
Contraction of basal filopodia controls periodic feather bra...
2018-04-09 [10.1038/s41467-018-03801-z] |
首页 |
期刊大全 |
MSDS查询 |
化工产品分类 |
生物活性化合物 |
关于我们 |
免责声明:知识产权问题请联系 service1@chemsrc.com
Copyright © 2024 ChemSrc All Rights Reserved