Yang Wang, Justin Roller, Radenka Maric
文献索引:10.1021/acsomega.8b00380
全文:HTML全文
Nanostructured electrodes effectively enhance the kinetics of the charge/discharge process in lithium-ion (Li-ion) batteries. However, the fabrication of these electrodes often involves complex processing steps. This study demonstrates a one-step improved flame spray pyrolysis synthesis approach to directly deposit the most common Li-ion battery cathode material LiNi1/3Mn1/3Co1/3O2 onto current collectors, which is identified as reactive spray deposition technology (RSDT). Because of the economical and continuous nature of RSDT, the industrial scale of manufacturing nanostructured electrodes for Li-ion batteries can be potentially developed. Morphologies of the electrodes are well controlled so that their electrochemical properties can be tailored to accommodate intended applications. In detail, by adjusting the precursor concentration in the solution feed during the operation of RSDT, the specific surface area of synthesized material can be fine-tuned accordingly. Although the electrodes prepared with low precursor concentration exhibit the highest surface area and deliver the highest initial discharge capacity of 192.1 mAh g–1, the most stable cycling performance is demonstrated by the electrodes fabricated with high precursor concentration, retaining 93.6% of the initial capacity after 100 cycles in half-cell testing. This innovative direct deposition method considerably simplifies the manufacture process of high-performance nanostructured electrodes and enables effortless modification of their properties. Moreover, no hazardous waste is generated from this synthesis route.
CO Adsorption on Metal-Decorated Phosphorene
2018-04-09 [10.1021/acsomega.8b00133] |
Overgrowth Versus Galvanic Replacement: Mechanistic Roles of...
2018-04-09 [10.1021/acsomega.8b00394] |
Mutations Alter RNA-Mediated Conversion of Human Prions
2018-04-09 [10.1021/acsomega.7b02007] |
Gold(I) Complexes of the Geminal Phosphinoborane tBu2PCH2BPh...
2018-04-09 [10.1021/acsomega.8b00143] |
Electrospun Gelatin Membrane Cross-Linked by a Bis(diarylcar...
2018-04-09 [10.1021/acsomega.8b00162] |
首页 |
期刊大全 |
MSDS查询 |
化工产品分类 |
生物活性化合物 |
关于我们 |
免责声明:知识产权问题请联系 service1@chemsrc.com
Copyright © 2024 ChemSrc All Rights Reserved