Simon Roussanaly, Rahul Anantharaman, Karl Lindqvist, Brede Hagen
文献索引:10.1039/C8SE00039E
全文:HTML全文
Developing “good” membrane modules and materials is a key step towards reducing the cost of membrane-based CO2 capture. While this is traditionally being done through incremental development of existing and new materials, this paper presents a new approach to identify membrane materials with a disruptive potential to reduce the cost of CO2 capture for six potential industrial and power generation cases. For each case, this approach first identifies the membrane properties targets required to reach cost-competitiveness and several cost-reduction levels compared to MEA-based CO2 capture, through the evaluation of a wide range of possible membrane properties. These properties targets are then compared to membrane module properties which can be theoretically achieved using 401 polymeric membrane materials, in order to highlight 73 high-potential materials which could be used by membrane development experts to select materials worth pushing towards further development once practical considerations have been taken into account. Beyond the identification of individual materials, the ranges of membrane properties targets also show the strong potential of membrane-based capture for industrial cases in which the CO2 content in the flue gas is greater than 11%, and that considering CO2 capture ratios lower than 90% would significantly improve the competitiveness of membrane-based capture and lead to potentially significant cost reduction. Finally, it is important to note that the approach discussed here is applicable to other separation technologies and applications beyond CO2 capture, and could help reduce both the cost and time required to develop cost-effective technologies.
Electrochemical Reduction of Carbon Dioxide with a Molecular...
2018-04-11 [10.1039/C8SE00027A] |
Nickel-iron catalysts for electrochemical water oxidation – ...
2018-04-10 [10.1039/C8SE00114F] |
Maximizing tandem solar cell power extraction using a three-...
2018-04-09 [10.1039/C8SE00133B] |
Integration of metal organic framework with zeolite: A highl...
2018-04-06 [10.1039/C8SE00098K] |
An Efficient Atom-Economical Chemoselective CO2 Cycloadditio...
2018-04-06 [10.1039/C8SE00092A] |
首页 |
期刊大全 |
MSDS查询 |
化工产品分类 |
生物活性化合物 |
关于我们 |
免责声明:知识产权问题请联系 service1@chemsrc.com
Copyright © 2024 ChemSrc All Rights Reserved