Iver E. Anderson, Emma M.H. White, Ryan Dehoff
文献索引:10.1016/j.cossms.2018.01.002
全文:HTML全文
Additive manufacturing (AM) promises to redesign traditional manufacturing by enabling the ultimate in agility for rapid component design changes in commercial products and for fabricating complex integrated parts. By significantly increasing quality and yield of metallic alloy powders, the pace for design, development, and deployment of the most promising AM approaches can be greatly accelerated, resulting in rapid commercialization of these advanced manufacturing methods. By successful completion of a critical suite of processing research tasks that are intended to greatly enhance gas atomized powder quality and the precision and efficiency of powder production, researchers can help promote continued rapid growth of AM. Other powder-based or spray-based advanced manufacturing methods could also benefit from these research outcomes, promoting the next wave of sustainable manufacturing technologies for conventional and advanced materials.
Glassy phases in organic semiconductors
2018-03-17 [10.1016/j.cossms.2018.03.001] |
Stress corrosion crack initiation in Alloy 690 in high tempe...
2018-02-21 [10.1016/j.cossms.2018.02.001] |
Recent approaches to reduce aging phenomena in oxygen- and n...
2018-01-12 [10.1016/j.cossms.2018.01.001] |
Anisotropic organic glasses
2017-12-01 [10.1016/j.cossms.2017.11.001] |
Hydrogen embrittlement in compositionally complex FeNiCoCrMn...
2017-12-01 [10.1016/j.cossms.2017.11.002] |
首页 |
期刊大全 |
MSDS查询 |
化工产品分类 |
生物活性化合物 |
关于我们 |
免责声明:知识产权问题请联系 service1@chemsrc.com
Copyright © 2024 ChemSrc All Rights Reserved