Vladyslav Turlo, Timothy J. Rupert
文献索引:10.1016/j.actamat.2018.03.055
全文:HTML全文
Grain boundary complexions have been observed to affect the mechanical behavior of nanocrystalline metals, improving both strength and ductility. While an explanation for the improved ductility exists, the observed effect on strength remains unexplained. In this work, we use atomistic simulations to explore the influence of ordered and disordered complexions on two deformation mechanisms which are essential for nanocrystalline plasticity, namely dislocation emission and propagation. Both ordered and disordered grain boundary complexions in Cu-Zr are characterized by excess free volume and promote dislocation emission by reducing the critical emission stress. Alternatively, these complexions are characterized by strong dislocation pinning regions that increase the flow stress required for dislocation propagation. Such pinning regions are caused by ledges and solute atoms at the grain-complexion interfaces and may be dependent on the complexion state as well as the atomic size mismatch between the matrix and solute elements. The trends observed in our simulations of dislocation propagation align with the available experimental data, suggesting that dislocation propagation is the rate-limiting mechanism behind plasticity in nanocrystalline Cu-Zr alloys.
Compositional effect on microstructure and properties of NbT...
2018-04-04 [10.1016/j.actamat.2018.03.065] |
High resolution transmission electron microscopy correlated ...
2018-04-04 [10.1016/j.actamat.2018.03.066] |
Effect of heat treatment on the microstructural evolution of...
2018-04-04 [10.1016/j.actamat.2018.03.017] |
Fatigue deformation in a polycrystalline nickel base superal...
2018-04-03 [10.1016/j.actamat.2018.03.035] |
Deformation mechanisms of nil temperature ductile polycrysta...
2018-04-02 [10.1016/j.actamat.2018.03.064] |
首页 |
期刊大全 |
MSDS查询 |
化工产品分类 |
生物活性化合物 |
关于我们 |
免责声明:知识产权问题请联系 service1@chemsrc.com
Copyright © 2024 ChemSrc All Rights Reserved