JacobA. Hill, Kevin J. Endres, Pendar Mahmoudi, Mark W. Matsen, Chrys Wesdemiotis, Mark D. Foster
文献索引:10.1021/acsmacrolett.7b00993
全文:HTML全文
The preference for a shorter chain component at a polymer blend surface impacts surface properties key to application-specific performance. While such segregation is known for blends containing low molecular weight additives or systems with large polydispersity, it has not been reported for anionically polymerized polymers that are viewed, in practice, as monodisperse. Observations with surface layer matrix-assisted laser desorption ionization time-of-flight mass spectrometry (SL-MALDI-ToF-MS), which distinguishes surface species without labeling and provides the entire molecular weight distribution, demonstrate that entropically driven surface enrichment of shorter chains occurs even in low polydispersity materials. For 6 kDa polystyrene the number-average molecular weight (Mn) at the surface is ca. 300 Da (5%) lower than that in the bulk, and for 7 kDa poly(methyl methacryalate) the shift is ca. 500 Da. These observations are in qualitative agreement with results from a mean-field theory that considers a homopolymer melt with a molecular-weight distribution matched to the experiments.
B12-Dependent Protein Oligomerization Facilitates Layer-by-L...
2018-04-09 [10.1021/acsmacrolett.8b00147] |
Double-Cross-Linked Hydrogel Strengthened by UV Irradiation ...
2018-04-09 [10.1021/acsmacrolett.8b00138] |
Relationship between Segmental Dynamics Measured by Quasi-El...
2018-04-06 [10.1021/acsmacrolett.8b00159] |
Grafting Density Impacts Local Nanoscale Hydrophobicity in P...
2018-04-05 [10.1021/acsmacrolett.8b00004] |
3D Printing All-Aromatic Polyimides Using Stereolithographic...
2018-04-04 [10.1021/acsmacrolett.8b00126] |
首页 |
期刊大全 |
MSDS查询 |
化工产品分类 |
生物活性化合物 |
关于我们 |
免责声明:知识产权问题请联系 service1@chemsrc.com
Copyright © 2024 ChemSrc All Rights Reserved