S. Petisco-Ferrero, L. Pérez Álvarez, L. Ruiz-Rubio, J.L. Vilas Vilela, J.R. Sarasua
文献索引:10.1016/j.compscitech.2018.04.001
全文:HTML全文
The nanoscale interface between hydroxyapatite (HA) particles and PLLA matrix appears to be the determining factor for poor mechanical performance of this family of biocomposites in load-bearing applications. It has been demonstrated that when these biocomposites are loaded, the physical adsorption between inorganic particles and polymeric matrix does not allow for load transfer and additional free surfaces that act as crack nucleators are created. To overcome this limitation, we propose plasma polymerization of poly (acrylic acid) (PAA) on HA particles as an effective method to produce strong interactions with the polylactide (PLLA) matrix. In this work, evidences of an intimate bonding between HAPAA particles and PLLA are given. Based on the thermodegradation behaviour of the composites it was found that the plasma deposited layer arrested free hydroxyl groups of PLLA chains, hindering the transesterification reactions that cause the thermal degradation of PLLA. As a result, thermal degradation of the composites was retarded and followed the chain scission route producing acetaldehyde, CO and CO2. From the mechanical characterization it became clear that load transfer was developed by means of the PAA compatibilized interface resulting in the observed enhancement of the elasticity and damping behaviour of the biocomposites.
Microstructure evolution and self-assembling of CNT networks...
2018-04-04 [10.1016/j.compscitech.2018.04.003] |
Synergetic enhancement of thermal conductivity by constructi...
2018-04-03 [10.1016/j.compscitech.2018.03.016] |
Study on synergistic toughening of polypropylene with high-d...
2018-04-03 [10.1016/j.compscitech.2018.03.044] |
Dielectric response of nano aluminium tri-hydrate filled sil...
2018-04-03 [10.1016/j.compscitech.2018.04.002] |
Simultaneous enhancement of electrical conductivity and mech...
2018-04-01 [10.1016/j.compscitech.2018.03.042] |
首页 |
期刊大全 |
MSDS查询 |
化工产品分类 |
生物活性化合物 |
关于我们 |
免责声明:知识产权问题请联系 service1@chemsrc.com
Copyright © 2024 ChemSrc All Rights Reserved