Kurt A. Terrani, Mehdi Balooch, Joseph R. Burns, Quinlan B. Smith
文献索引:10.1016/j.jnucmat.2018.04.004
全文:HTML全文
The mechanical properties of a well-characterized irradiated light water reactor fuel pin with an average burnup of 72 MWd/kgU were investigated by utilizing nano-indentation technique. Young's modulus and hardness are reported as functions of radial positions covering from mid radial position in the urania pellet to high burnup structure, fuel-cladding chemical interaction zone and zirconium-based cladding. By probing microstructure of the high burnup zone, the mechanical properties of sub-grains and the interaction between them were examined at the nanometer scale. Force-displacement curves from each of these individual sub-grains suggest they resemble single crystal UO2. However, these restructured grains are weakly bonded to their neighbors.
Ion irradiation induced nucleation and growth of nanoparticl...
2018-04-04 [10.1016/j.jnucmat.2018.04.005] |
Metallurgical characterization of melt-spun ribbons of U-5.4...
2018-04-04 [10.1016/j.jnucmat.2018.02.002] |
Experimental studies on eutectic formation between metallic ...
2018-04-03 [10.1016/j.jnucmat.2018.04.003] |
Correction to APT chemical composition measurements in ODS s...
2018-04-03 [10.1016/j.jnucmat.2018.03.057] |
Immobilization of iodine via copper iodide
2018-04-03 [10.1016/j.jnucmat.2018.04.002] |
首页 |
期刊大全 |
MSDS查询 |
化工产品分类 |
生物活性化合物 |
关于我们 |
免责声明:知识产权问题请联系 service1@chemsrc.com
Copyright © 2024 ChemSrc All Rights Reserved