Joelson S. Medeiros, Aureliano M. Oliveira, Jancineide O. de Carvalho, Ritchelli Ricci, Maria do C. C. Martins, Bruno V. M. Rodrigues, Thomas J. Webster, Bartolomeu C. Viana, Luana M. R. Vasconcellos, Renata A. Canevari, Fernanda R. Marciano, Anderson O. Lobo
文献索引:10.1021/acsbiomaterials.7b01032
全文:HTML全文
Nanomaterials based on graphene oxide nanoribbons (GNR) and nanohydroxyapatite (nHAp) serve as attractive materials for bone tissue engineering. Herein, we evaluated the potential of nHAp/GNR toward in vitro analysis of specific genes related to osteogenesis and in vivo bone regeneration using animal model. Three different concentrations of nHAp/GNR composites were analyzed in vitro using a cytotoxicity assay, and osteogenic potential was determined by ALP, OPN, OCN, COL1, and RUNX2 genes and alkaline phosphatase assays. In vivo bone neoformation using a well-established in vivo rat tibia defect model was used to confirm the efficiency of the optimized composite. The scaffolds were nontoxic, and the osteogenesis process was dose-dependent (at 200 μg mL–1 of nHAp/GNR) compared to controls. The in vivo results showed higher bone neoformation after 15 days of nHAp/GNR implantation compared to all groups. After 21 days, both nHAp/GNR composites showed better lamellar bone formation compared to control. We attributed this enhanced bone neoformation to the high bioactivity and surface area presented by nHAp/GNR composites, which was systematically evaluated in previous studies. These new in vivo results suggest that nHAp/GNR composites can be exploited for a range of strategies for the improved development of novel dental and orthopedic bone grafts to accelerate bone regeneration.
Transferable Matrixes Produced from Decellularized Extracell...
2018-04-16 [10.1021/acsbiomaterials.7b00747] |
Recombinant Spider Silk Hydrogels for Sustained Release of B...
2018-04-16 [10.1021/acsbiomaterials.8b00382] |
Targeting Early Apoptosis in Acute Ischemic Stroke with a Sm...
2018-04-13 [10.1021/acsbiomaterials.8b00213] |
Consecutive Spray Drying to Produce Coated Dry Powder Vaccin...
2018-04-10 [10.1021/acsbiomaterials.8b00117] |
Higher Biostability of rh-aFGF-Carbomer 940 Hydrogel and Its...
2018-04-10 [10.1021/acsbiomaterials.8b00011] |
首页 |
期刊大全 |
MSDS查询 |
化工产品分类 |
生物活性化合物 |
关于我们 |
免责声明:知识产权问题请联系 service1@chemsrc.com
Copyright © 2024 ChemSrc All Rights Reserved