Yang Yao, Hans-Juergen Butt, Jiajia Zhou, Masao Doi, George Floudas
文献索引:10.1021/acs.macromol.7b02724
全文:HTML全文
Capillary imbibition of homogeneous mixtures of entangled poly(ethylene oxide) melts in nanopores of self-ordered nanoporous alumina follows a t1/2 dependence but contradicts the classical Lucas–Washburn equation. Herein we employ reflection microscopy and self-consistent field theory (SCFT) calculations to demonstrate the faster penetration of nanopores for the shorter chains. Combined results suggest on average an ∼15% enrichment by the shorter chains. On top of that, SCFT shows an enrichment of the short chains near the pore surface. Possible applications in separating long and short polymer chains by the difference in imbibition speed—in the absence of solvent—are discussed.
Tunable Blocking Agents for Temperature-Controlled Triazolin...
2018-04-11 [10.1021/acs.macromol.7b02526] |
Electrostatic and Hydrophobic Interactions in NaCMC Aqueous ...
2018-04-11 [10.1021/acs.macromol.8b00178] |
Thermodynamic Interactions in a Model Polydiene/Polyolefin B...
2018-04-10 [10.1021/acs.macromol.7b02181] |
Structural Elucidation of Amorphous Photocatalytic Polymers ...
2018-04-10 [10.1021/acs.macromol.7b02544] |
Structure of the Crystalline Core of Fiber-like Polythiophen...
2018-04-10 [10.1021/acs.macromol.7b02552] |
首页 |
期刊大全 |
MSDS查询 |
化工产品分类 |
生物活性化合物 |
关于我们 |
免责声明:知识产权问题请联系 service1@chemsrc.com
Copyright © 2024 ChemSrc All Rights Reserved