Hong Yun Yue; Zhan Li Han; Liang Liang Tao; Yao Fa Zhang; Lan Wang; Xiang Nan Li; Yan Hong Yin; Wei Guang Yang; Shu Ting Yang
文献索引:10.1002/celc.201800011
全文:HTML全文
Diphenyl ether (DPE) is investigated as a film‐forming additive to improve the cyclic stability of LiNi0.5Mn1.5O4 at high voltage and elevated temperature (55 °C). Addition of DPE in the baseline electrolyte significantly improves the capacity retention of LiNi0.5Mn1.5O4 at elevated temperature. Its capacity retention increases from 41.2 % at the baseline electrolyte to 90.5 % after 0.1 vol% DPE is added to the baseline electrolyte in 100 cycles. Calculations demonstrate that DPE is oxidized preferentially to the baseline electrolyte. The experimental results show that a robust and uniform film is generated on the LiNi0.5Mn1.5O4 surface, alleviating the subsequent electrolyte decomposition and protecting LiNi0.5Mn1.5O4 from transition metal dissolution and structural destruction.
|
Hierarchical MnO2 Located on Carbon Nanotubes for Enhanced E...
2018-04-17 [10.1002/celc.201701110] |
|
Hydrogen Bonding Effects on the Reversible Reorganization of...
2018-04-14 [10.1002/celc.201800148] |
|
In situ Synthesis of V2O3‐Intercalated N‐doped Graphene Nano...
2018-04-06 [10.1002/celc.201800213] |
|
Redox‐Active Copper‐Benzotriazole Stacked Multiwalled Carbon...
2018-04-06 [10.1002/celc.201800110] |
|
Electrochemical Biosensor for MicroRNA Detection Based on Ca...
2018-04-06 [10.1002/celc.201800255] |
首页 |
期刊大全 |
MSDS查询 |
化工产品分类 |
生物活性化合物 |
关于我们 |
免责声明:知识产权问题请联系 service1@chemsrc.com
Copyright © 2024 ChemSrc All Rights Reserved