Faezeh Sabri, Kevin Berthomier, Antoine Marion, Louis Fradette, Jason R. Tavares, Nick Virgilio
文献索引:10.1016/j.carbpol.2018.04.012
全文:HTML全文
In this article, we demonstrate that submicrometer particles with surface-grafted sodium alginate (SA) display enhanced and reversible aggregation/disaggregation properties in aqueous solution. 300 nm silica particles were first functionalized with an aminosilane coupling agent, followed by the grafting of pH-sensitive SA, as confirmed by zeta potential, XPS and FTIR analyses. The SA-modified particles show enhanced aggregation properties at acidic pH compared to unmodified silica, with a 10 times increase in average aggregate diameter. The process is reversible, as the aggregates can be broken and dispersed again when the pH is increased back to 7.0. As a result, the sedimentation rate of SA-modified particles at pH 3.0 is both significantly faster and complete compared to the unmodified particles. This enhanced aggregation is most likely due to the formation of intermolecular hydrogen bonds between neighboring SA-modified particles. This work illustrates how surface-grafted macromolecules of natural origins can be used to tune interparticle interactions, in order to improve separation processes.
Extraction and characterization of molecular properties of r...
2018-04-10 [10.1016/j.carbpol.2018.04.024] |
On the potential of using nanocellulose for consolidation of...
2018-04-09 [10.1016/j.carbpol.2018.04.020] |
Cellulosic Cr(salen) complex as an efficient and recyclable ...
2018-04-07 [10.1016/j.carbpol.2018.04.031] |
Effect of autohydrolysis on Pinus radiata wood for hemicellu...
2018-04-07 [10.1016/j.carbpol.2018.04.010] |
Cyclic nigerosyl-1,6-nigerose-based nanosponges: An innovati...
2018-04-06 [10.1016/j.carbpol.2018.04.027] |
首页 |
期刊大全 |
MSDS查询 |
化工产品分类 |
生物活性化合物 |
关于我们 |
免责声明:知识产权问题请联系 service1@chemsrc.com
Copyright © 2024 ChemSrc All Rights Reserved