Ganga Halder, Dibyendu Ghosh, Md. Yusuf Ali, Atharva Sahasrabudhe, Sayan Bhattacharyya
文献索引:10.1021/acs.langmuir.8b00293
全文:HTML全文
The unique properties of II–VI semiconductor nanocrystals such as superior light absorption, size-dependent optoelectronic properties, solution processability, and interesting photophysics prompted quantum-dot-sensitized solar cells (QDSSCs) as promising candidates for next-generation photovoltaic (PV) technology. QDSSCs have advantages such as low-cost device fabrication, multiple exciton generation, and the possibility to push over the theoretical power conversion efficiency (PCE) limit of 32%. In spite of dedicated research efforts to enhance the PCE, optimize individual solar cell components, and better understand the underlying science, QDSSCs have unfortunately not lived up to their potential due to shortcomings in the fabrication process and with the QDs themselves. In this feature article, we briefly discuss the QDSSC concepts and mechanisms of the charge carrier recombination pathways that occur at multiple interfaces, viz., (i) metal oxide (MO)/QDs, (ii) MO/QDs/electrolyte, and (iii) counter electrode (CE)/electrolyte. The rational strategies that have been developed to minimize/block these charge recombination pathways are elaborated. The article concludes with a discussion of the present challenges in fabricating efficient devices and future prospects for QDSSCs.
Floating and Tether-Coupled Adhesion of Bacteria to Hydropho...
2018-04-18 [10.1021/acs.langmuir.7b04331] |
A Concentration-Dependent Insulin Immobilization Behavior of...
2018-04-18 [10.1021/acs.langmuir.8b00377] |
Numerical Study of Surfactant Dynamics during Emulsification...
2018-04-18 [10.1021/acs.langmuir.8b00123] |
Bifunctionality of Iminodiacetic Acid-Modified Lysozyme on I...
2018-04-17 [10.1021/acs.langmuir.8b00254] |
Maximum Spreading and Rebound of a Droplet Impacting onto a ...
2018-04-17 [10.1021/acs.langmuir.8b00625] |
首页 |
期刊大全 |
MSDS查询 |
化工产品分类 |
生物活性化合物 |
关于我们 |
免责声明:知识产权问题请联系 service1@chemsrc.com
Copyright © 2024 ChemSrc All Rights Reserved