Yaroslav Odarchenko, David James Martin, Thomas Arnold, Andrew Michael Beale
文献索引:10.1039/C8FD00007G
全文:HTML全文
The mechanism of carbon monoxide oxidation over gold was explored using a model planar catalyst consisting of monodisperse gold nanoparticles periodically arranged on a single crystal SiO2/Si(111) substrates using a combination of Grazing Incidence Small Angle X-ray Scattering and Grazing Incidence X-ray Diffraction (GISAXS/GIXD) under reaction conditions. It is shown that nanoparticle composition, size and shape change when the catalyst is exposed to reactive gases. During CO oxidation, the particle’s submergence depth with respect to the surface decreases due to the removal of gold oxide at the metal-support edge, meanwhile the particle ‘flattens’ to maximise the number of the reaction sites along its perimeter. The effect of the CO concentration on the catalyst structure is also discussed. Our results support the dual catalytic sites mechanism whereby CO is activated on the gold surface whereas molecular oxygen is dissociating at the gold-support interface.
Zeolite structure determination using genetic algorithms and...
2018-04-13 [10.1039/C8FD00035B] |
Functionalised Microscale Nanoband Edge Electrode (MNEE) Arr...
2018-04-12 [10.1039/C8FD00063H] |
Data-driven learning and prediction of inorganic crystal str...
2018-04-12 [10.1039/C8FD00034D] |
Molecular dynamics simulations of carbon nanotube porins in ...
2018-04-11 [10.1039/C8FD00011E] |
Accelerating CALYPSO Structure Prediction by Data-driven Lea...
2018-04-06 [10.1039/C8FD00055G] |
首页 |
期刊大全 |
MSDS查询 |
化工产品分类 |
生物活性化合物 |
关于我们 |
免责声明:知识产权问题请联系 service1@chemsrc.com
Copyright © 2024 ChemSrc All Rights Reserved