SilviaG. Rull, Ignacio Funes-Ardoiz, Celia Maya, Feliu Maseras, Manuel R. Fructos, Tomás R. Belderrain, M. Carmen Nicasio
文献索引:10.1021/acscatal.8b00856
全文:HTML全文
Nickel catalysis is gaining in popularity in recent years, mostly within the area of cross-coupling. However, unlike Pd, the mechanisms of Ni-catalyzed C–C and C–heteroatom bond forming reactions have been much less studied, in particular when N-heterocyclic carbenes are used as ligands. Here, we present a thorough study of the mechanism of C–N cross-coupling reactions catalyzed by an NHC-Ni complex. Focusing on the coupling of 2-chloropyridines with indole catalyzed by [(IPrNi(styrene)2] (IPr = N,N′-bis(2,6-diisopropylphenyl)imidazol-2-ylidene), we have examined each of the elementary steps: i.e., oxidative addition, ligand substitution, and reductive elimination. All relevant catalytic intermediates have been isolated and structurally characterized by both spectroscopic and crystallographic methods. Kinetic studies have revealed that the reductive elimination is the rate-limiting step. Catalyst deactivation is related to the formation of unproductive dinuclear pyridyl-bridged NHC-NiII species, which can be prevented by increasing the size of the heteroaryl chloride. These investigations support a neutral Ni(0)/Ni(II) catalytic cycle. Calculations corroborate the experimental evidence and confirm the influence exerted by the ligands in each of the elementary steps.
|
Iron-Catalyzed Direct Olefin Diazidation via Peroxyester Act...
2018-04-19 [10.1021/acscatal.8b00821] |
|
Catalytic Dehydrogenation of (Di)Amine-Boranes with a Geomet...
2018-04-18 [10.1021/acscatal.8b00152] |
|
Well-Defined β-Diketiminatocobalt(II) Complexes for Alkene C...
2018-04-18 [10.1021/acscatal.8b00631] |
|
Isoprene Regioblock Copolymerization: Switching the Regiosel...
2018-04-18 [10.1021/acscatal.8b00600] |
|
Low-Energy Electrocatalytic CO2 Reduction in Water over Mn-C...
2018-04-18 [10.1021/acscatal.8b01068] |
首页 |
期刊大全 |
MSDS查询 |
化工产品分类 |
生物活性化合物 |
关于我们 |
免责声明:知识产权问题请联系 service1@chemsrc.com
Copyright © 2026 ChemSrc All Rights Reserved