Dongmin Yun, Yong Wang, Jose Efrain Herrera
文献索引:10.1021/acscatal.7b03327
全文:HTML全文
The mechanism for the reoxidation step in the Mars-van Krevelen mechanism for ethanol partial oxidation over vanadia anchored on titanium oxide is examined. Kinetic parameters such as ethanol heat of adsorption, the activation energy for the rate-limiting step (alpha hydrogen abstraction on the adsorbed ethoxide) were obtained while the energetics of the catalyst reoxidation step were explored. A comparison of the parameters obtained from kinetic analysis and the apparent activation energies reported in the literature indicated that a kinetic model that incorporates a catalyst reoxidation step where molecular oxygen adsorbs into a titania vacancy accurately predicted the kinetic parameters. In contrast, a model where molecular oxygen directly adsorbs on the reduced vanadia resulted in an underestimation of the ethanol heat of adsorption and activation energy for the alpha hydrogen abstraction step. A computational analysis was implemented to elucidate a mechanistic pathway for reduced vanadia that incorporates oxygen adsorption on a titania vacancy. The results indicated that the vanadia reoxidation step involves surface oxygen migration from the titania surface to the reduced vanadia center. The quantification of oxygen uptake by the reduced catalyst validates the premise of this assumption: titania vacancies are created during ethanol partial oxidation and are active sites for oxygen adsorption.
|
Iron-Catalyzed Direct Olefin Diazidation via Peroxyester Act...
2018-04-19 [10.1021/acscatal.8b00821] |
|
Catalytic Dehydrogenation of (Di)Amine-Boranes with a Geomet...
2018-04-18 [10.1021/acscatal.8b00152] |
|
Well-Defined β-Diketiminatocobalt(II) Complexes for Alkene C...
2018-04-18 [10.1021/acscatal.8b00631] |
|
Isoprene Regioblock Copolymerization: Switching the Regiosel...
2018-04-18 [10.1021/acscatal.8b00600] |
|
Low-Energy Electrocatalytic CO2 Reduction in Water over Mn-C...
2018-04-18 [10.1021/acscatal.8b01068] |
首页 |
期刊大全 |
MSDS查询 |
化工产品分类 |
生物活性化合物 |
关于我们 |
免责声明:知识产权问题请联系 service1@chemsrc.com
Copyright © 2026 ChemSrc All Rights Reserved