Antonio Cuadrado,Gina Manda,Ahmed Hassan,María José Alcaraz,Coral Barbas,Andreas Daiber,Pietro Ghezzi,Rafael León,Manuela G. López,Baldo Oliva,Marta Pajares,Ana I. Rojo,Natalia Robledinos-Antón,Angela M. Valverde,Emre Guney,Harald H. H. W. Schmidt,Martin C. Michel,ASSOCIATE EDITOR,Antonio Cuadrado,Gina Manda,Ahmed Hassan,María José Alcaraz,Coral Barbas,Andreas Daiber,Pietro Ghezzi,Rafael León,Manuela G. López,Baldo Oliva,Marta Pajares,Ana I. Rojo,Natalia Robledinos-Antón,Angela M. Valverde,Emre Guney,Harald H. H. W. Schmidt,Antonio Cuadrado,Gina Manda,Ahmed Hassan,María José Alcaraz,Coral Barbas,Andreas Daiber,Pietro Ghezzi,Rafael León,Manuela G. López,Baldo Oliva,Marta Pajares,Ana I. Rojo,Natalia Robledinos-Antón,Angela M. Valverde,Emre Guney,Harald H. H. W. Schmidt
文献索引:10.1124/pr.117.014753
全文:HTML全文
Systems medicine has a mechanism-based rather than a symptom- or organ-based approach to disease and identifies therapeutic targets in a nonhypothesis-driven manner. In this work, we apply this to transcription factor nuclear factor (erythroid-derived 2)–like 2 (NRF2) by cross-validating its position in a protein–protein interaction network (the NRF2 interactome) functionally linked to cytoprotection in low-grade stress, chronic inflammation, metabolic alterations, and reactive oxygen species formation. Multiscale network analysis of these molecular profiles suggests alterations of NRF2 expression and activity as a common mechanism in a subnetwork of diseases (the NRF2 diseasome). This network joins apparently heterogeneous phenotypes such as autoimmune, respiratory, digestive, cardiovascular, metabolic, and neurodegenerative diseases, along with cancer. Importantly, this approach matches and confirms in silico several applications for NRF2-modulating drugs validated in vivo at different phases of clinical development. Pharmacologically, their profile is as diverse as electrophilic dimethyl fumarate, synthetic triterpenoids like bardoxolone methyl and sulforaphane, protein–protein or DNA–protein interaction inhibitors, and even registered drugs such as metformin and statins, which activate NRF2 and may be repurposed for indications within the NRF2 cluster of disease phenotypes. Thus, NRF2 represents one of the first targets fully embraced by classic and systems medicine approaches to facilitate both drug development and drug repurposing by focusing on a set of disease phenotypes that appear to be mechanistically linked. The resulting NRF2 drugome may therefore rapidly advance several surprising clinical options for this subset of chronic diseases.
Neuroimmune Axes of the Blood–Brain Barriers and Blood–Brain...
2018-04-01 [10.1124/pr.117.014647] |
Interindividual Differences in Caffeine Metabolism and Facto...
2018-04-01 [10.1124/pr.117.014407] |
Etiology and Pharmacology of Neuropathic Pain
2018-04-01 [10.1124/pr.117.014399] |
Drugs for Insomnia beyond Benzodiazepines: Pharmacology, Cli...
2018-04-01 [10.1124/pr.117.014381] |
Biomarkers for In Vivo Assessment of Transporter Function
2018-04-01 [10.1124/pr.116.013326] |
首页 |
期刊大全 |
MSDS查询 |
化工产品分类 |
生物活性化合物 |
关于我们 |
免责声明:知识产权问题请联系 service1@chemsrc.com
Copyright © 2024 ChemSrc All Rights Reserved