Xu Zhang, Zihe Zhang, Sai Yao, An Chen, Xudong Zhao, Zhen Zhou
文献索引:10.1038/s41524-018-0070-2
全文:HTML全文
Due to the high cost and insufficient resource of lithium, sodium-ion batteries are widely investigated for large-scale applications. Typically, insertion-type materials possess better cyclic stability than alloy-type and conversion-type ones. Therefore, in this work, we proposed a facile and effective method to screen sodium-based layered materials based on Materials Project database as potential candidate insertion-type materials for sodium ion batteries. The obtained Na-based layered materials contains 38 kinds of space group, which reveals that the credibility of our screening approach would not be affected by the space group. Then, some important indexes of the representative materials, including the average voltage, volume change and sodium ion mobility, were further studied by means of density functional theory computations. Some materials with extremely low volume changes and Na diffusion barriers are promising candidates for sodium ion batteries. We believe that our classification algorithm could also be used to search for other alkali and multivalent ion-based layered materials, to accelerate the development of battery materials.
Improved phase field model of dislocation intersections
2018-04-11 [10.1038/s41524-018-0075-x] |
Spatial correlation of elastic heterogeneity tunes the defor...
2018-04-06 [10.1038/s41524-018-0077-8] |
Computational discovery of p-type transparent oxide semicond...
2018-04-03 [10.1038/s41524-018-0073-z] |
Statistical variances of diffusional properties from ab init...
2018-04-03 [10.1038/s41524-018-0074-y] |
Design of high-strength refractory complex solid-solution al...
2018-03-28 [10.1038/s41524-018-0072-0] |
首页 |
期刊大全 |
MSDS查询 |
化工产品分类 |
生物活性化合物 |
关于我们 |
免责声明:知识产权问题请联系 service1@chemsrc.com
Copyright © 2024 ChemSrc All Rights Reserved