前往化源商城

Journal of Infectious Diseases 2015-01-01

The surface rhamnopolysaccharide epa of Enterococcus faecalis is a key determinant of intestinal colonization.

Lionel Rigottier-Gois, Clément Madec, Albertas Navickas, Renata C Matos, Elodie Akary-Lepage, Michel-Yves Mistou, Pascale Serror

文献索引:J. Infect. Dis. 211(1) , 62-71, (2015)

全文:HTML全文

摘要

Enterococcus faecalis is a commensal bacterium of the human intestine and a major opportunistic pathogen in immunocompromised and elderly patients. The pathogenesis of E. faecalis infection relies in part on its capacity to colonize the gut. Following disruption of intestinal homeostasis, E. faecalis can overgrow, cross the intestinal barrier, and enter the lymph and bloodstream. To identify and characterize E. faecalis genes that are key to intestinal colonization, our strategy consisted in screening mutants for the following phenotypes related to intestinal lifestyle: antibiotic resistance, overgrowth, and competition against microbiota. From the identified colonization genes, epaX encodes a glycosyltransferase located in a variable region of the enterococcal polysaccharide antigen (epa) locus. We demonstrated that EpaX acts on sugar composition, promoting resistance to bile salts and cell wall integrity. Given that EpaX is enriched in hospital-adapted isolates, this study points to the importance of the epa variability as a key determinant for enterococcal intestinal colonization. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

相关化合物

结构式 名称/CAS号 全部文献
甘油 结构式 甘油
CAS:56-81-5
丙烯酰胺 结构式 丙烯酰胺
CAS:79-06-1
L-鼠李糖 结构式 L-鼠李糖
CAS:10030-85-0