前往化源商城

ChemPhysChem 2014-07-21

Yttrium oxide/gadolinium oxide-modified platinum nanoparticles as cathodes for the oxygen reduction reaction.

Yun Luo, Aurélien Habrioux, Laura Calvillo, Gaetano Granozzi, Nicolas Alonso-Vante

文献索引:ChemPhysChem 15(10) , 2136-44, (2014)

全文:HTML全文

摘要

Rare-earth-element (Y, Gd) modified Pt nanoparticles (NPs) supported on a carbon substrate (Vulcan XC-72) are synthesized via a water-in-oil chemical route. In both cases, X-ray diffraction (XRD) measurements show the non-formation of an alloyed material. Photoemission spectroscopy (XPS) results reveal that Y and Gd are oxidized. Additionally, no evidence of an electronic modification of Pt can be brought to light. Transmission electron microscopy (TEM) studies indicate that Pt-Y(2)O(3) and Pt-Gd(2)O(3) particles are well dispersed on the substrate-and that their average particle sizes are smaller than the Pt-NP sizes. The catalytic activity of the Pt-Y(2)O(3)/C and Pt-Gd(2)O(3)/C catalysts towards the oxygen reduction reaction (ORR) is studied in a 0.5 M H(2)SO(4) electrolyte. The surface and mass specific activities of the Pt-Y(2)O(3)/C catalyst towards the ORR at 0.9 V (vs. the reversible hydrogen electrode, RHE) are (54.3±1.2) μA cm(-2)(Pt) and MA=(23.1±0.5) mA mg(-1)(Pt), respectively. These values are 1.3-, and 1.6-fold higher than the values obtained with a Pt/C catalyst. Although the as-prepared Pt-Gd(2)O(3)/C catalyst has a lower catalytic activity for the ORR compared to Pt/C, the heat-treated sample shows a surface specific activity of about (53.0±0.7) μA cm(-2) Pt , and a mass specific activity (MA) of about (18.2±0.5) mA mg(-1) Pt at 0.9 V (vs. RHE). The enhancement of the ORR kinetics on the Pt-Y(2)O(3)/C and heat-treated Pt-Gd(2)O(3)/C catalysts could be associated with the formation of platinum NPs presenting modified surface properties.© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

相关化合物

结构式 名称/CAS号 全部文献
硼氢化钠 结构式 硼氢化钠
CAS:16940-66-2
正庚烷 结构式 正庚烷
CAS:142-82-5
氯化钇 结构式 氯化钇
CAS:10361-92-9
氯化钆 结构式 氯化钆
CAS:10138-52-0