Shilpa Thakur, Jyotdeep Kaur
文献索引:Biofactors 41 , 232-41, (2015)
全文:HTML全文
Complex regulatory mechanisms control the expression of folate transporters within cells. Liver is the primary reserve of the folate stores within the body. As excessive alcohol consumption or inefficient dietary folate intake are known to create folate deficiency, so therefore the current study was designed to explore various regulatory mechanisms controlling the expression of folate transport in liver cells in conditions of ethanol exposure and folate deficiency. In order to see whether the effects mediated by the treatments are reversible or not, ethanol removal, and folate repletion was done after ethanol exposure and folate deficiency treatment respectively. Folate deficiency resulted an increase, whereas ethanol treatment decreased the folic acid uptake within the cells. The alterations in folic acid uptake were in agreement with the observed changes in the expression of folate transporters. Ethanol exposure resulted an increase in promoter methylation of reduced folate carrier; however, folate deficiency had no effect. The effects produced by ethanol exposure and folate deficiency were found to be reversible in nature as depicted in case of ethanol removal and folate repletion group. Rate of synthesis of folate transporters was found to be increased whereas half lives of mRNA of folate transporters was found to be decreased on folate deficiency treatment and reverse was the case on ethanol treatment. Overall, alteration in the expression of folate transporters under ethanol exposure and folate deficient conditions can be attributed to those regulatory mechanisms which work at the mRNA level.© 2015 International Union of Biochemistry and Molecular Biology.