前往化源商城

Analytical chemistry 2014-08-19

Development and optimization of an analytical system for volatile organic compound analysis coming from the heating of interstellar/cometary ice analogues.

Ninette Abou Mrad, Fabrice Duvernay, Patrice Theulé, Thierry Chiavassa, Grégoire Danger

文献索引:Anal. Chem. 86(16) , 8391-9, (2014)

全文:HTML全文

摘要

This contribution presents an original analytical system for studying volatile organic compounds (VOC) coming from the heating and/or irradiation of interstellar/cometary ice analogues (VAHIIA system) through laboratory experiments. The VAHIIA system brings solutions to three analytical constraints regarding chromatography analysis: the low desorption kinetics of VOC (many hours) in the vacuum chamber during laboratory experiments, the low pressure under which they sublime (10(-9) mbar), and the presence of water in ice analogues. The VAHIIA system which we developed, calibrated, and optimized is composed of two units. The first is a preconcentration unit providing the VOC recovery. This unit is based on a cryogenic trapping which allows VOC preconcentration and provides an adequate pressure allowing their subsequent transfer to an injection unit. The latter is a gaseous injection unit allowing the direct injection into the GC-MS of the VOC previously transferred from the preconcentration unit. The feasibility of the online transfer through this interface is demonstrated. Nanomoles of VOC can be detected with the VAHIIA system, and the variability in replicate measurements is lower than 13%. The advantages of the GC-MS in comparison to infrared spectroscopy are pointed out, the GC-MS allowing an unambiguous identification of compounds coming from complex mixtures. Beyond the application to astrophysical subjects, these analytical developments can be used for all systems requiring vacuum/cryogenic environments.

相关化合物

结构式 名称/CAS号 全部文献
乙腈 结构式 乙腈
CAS:75-05-8
甲醇 结构式 甲醇
CAS:67-56-1
乙酸甲酯 结构式 乙酸甲酯
CAS:79-20-9