前往化源商城

Journal of Materials Science: Materials in Medicine 2004-07-01

Grafting RGD containing peptides onto hydroxyapatite to promote osteoblastic cells adhesion.

M C Durrieu, S Pallu, F Guillemot, R Bareille, J Amédée, C H Baquey, C Labrugère, M Dard

文献索引:J. Mater. Sci. Mater. Med. 15 , 779-786, (2004)

全文:HTML全文

摘要

Ceramics possess osteoconductive properties but exhibit no intrinsic osteoinductive capacity. Consequently, they are unable to induce new bone formation in extra osseous sites. In order to develop bone substitutes with osteogenic properties, one promising approach consists of creating hybrid materials by associating in vitro biomaterials with osteoprogenitor cells. With this aim, we have developed a novel strategy of biomimetic modification to enhance osseointegration of hydroxyapatite (HA) implants. RGD-containing peptides displaying different conformations (linear GRGDSPC and cyclo-DfKRG) were grafted onto HA surface by means of a three-step reaction procedure: silanisation with APTES, cross-linking with N-succinimidyl-3-maleimidopropionate and finally immobilisation of peptides thanks to thiol bonding. Whole process was performed in anhydrous conditions to ensure the reproducibility of the chemical functionalisation. The three-step reaction procedure was characterised by high resolution X-ray photoelectron spectroscopy. Efficiency of this biomimetic modification was finally demonstrated by measuring the adhesion of osteoprogenitor cells isolated from HBMSC onto HA surface.

相关化合物

结构式 名称/CAS号 全部文献
3-马来酰亚胺丙酸 N-羟基琥珀酰亚胺酯 结构式 3-马来酰亚胺丙酸 N-羟基琥珀酰亚胺酯
CAS:55750-62-4