Jung-Yeon Park, Sang Jun Yoon, Huen Lee
文献索引:Environ. Sci. Technol. 37(8) , 1670-5, (2003)
全文:HTML全文
Acid gas absorption technology is of great importance in these days for the prevention of global warming and the resulting worldwide climate change. More efficient process design and development for the removal of acid gases has become important, together with the development of new absorbents as one of urgent areas of research in addressing global-warming problems. In the present work, aqueous solutions of 2-amino-2-hydroxymethyl-1,3-propanediol (AHPD), a sterically hindered amine, has been examined as a potential CO2 absorbent and compared with the most commonly used absorbent, monoethanolamine (MEA) solution, through equilibrium solubility measurements and 13C NMR spectroscopic analyses. The solubilities of CO2 in aqueous 10 mass % AHPD solutions were higher than those in aqueous 10 mass % MEA solutions above 4 kPa at 298.15 K, but below 4 kPa, the solubility behavior appeared to be the opposite. The solubility difference between these two solutions increased with the CO2 partial pressures above the crossover pressure. Equilibrated CO2-MEA-H2O and CO2-AHPD-H2O solutions at various CO2 partal pressures ranging from 0.01 to 3000 kPa were analyzed by 13C NMR spectroscopy to provide a more microscopic understanding of the reaction mechanisms in the two solutions. In the CO2-amine-H2O solutions, amine reacted with CO2 to form mainly the protonated amine (AMH+), bicarbonate ion (HCO3-), and carbamate anion (AMCO2-), where the quantitative ratio of bicarbonate ion to carbamate anion strongly influenced the CO2 loading in the amine solutions. A profusion of bicarbonate ions, but a very small amount of carbamate anions, was identified in the CO2-AHPD-H2O solution, whereas a considerable amount of carbamate anions was formed in the CO2-MEA-H2O solution. AHPD contains more hydroxyl groups than nonhindered MEA, and hence, the chemical shifts in its 13C NMR spectra were strongly influenced by the solution pH values. In contrast, MEA appeared to be insensitive to pH. The strong interrelations among CO2 solubility, CO2 partial pressure, bulkiness of the amine structure, and pH identified through the present experimental investigations can provide basic guidelines for finding new potential organic absorbents, including specifically designed amine chemicals.
结构式 | 名称/CAS号 | 分子式 | 全部文献 |
---|---|---|---|
![]() |
2-氨基-2-甲基-1,3-丙二醇(AMPD)
CAS:115-69-5 |
C4H11NO2 |
Immunophenotype and gene expression profile of mesenchymal s...
2014-09-15 [Vet. Immunol. Immunopathol. 161(1-2) , 21-31, (2014)] |
Gliotoxin potentiates osteoblast differentiation by inhibiti...
2015-07-01 [Mol. Med. Report. 12 , 877-84, (2015)] |
Final amended report on safety assessment on aminomethyl pro...
2009-01-01 [Int. J. Toxicol. 28(6 Suppl) , 141S-61S, (2009)] |
Biomineral/Agarose Composite Gels Enhance Proliferation of M...
2015-01-01 [Int. J. Mol. Sci. 16 , 14245-58, (2015)] |
Generalized polymer effective charge measurement by capillar...
2014-11-28 [J. Chromatogr. A. 1370 , 255-62, (2014)] |
首页 |
期刊大全 |
MSDS查询 |
化工产品分类 |
生物活性化合物 |
关于我们 |
免责声明:知识产权问题请联系 service1@chemsrc.com
Copyright © 2024 ChemSrc All Rights Reserved