Aleksandra Novakovic, Marija Pavlovic, Predrag Milojevic, Ivan Stojanovic, Dragoslav Nenezic, Miomir Jovic, Nenad Ugresic, Vladimir Kanjuh, Qin Yang, Guo-Wei He
文献索引:Basic Clin Pharmacol Toxicol. 111(1) , 24-30, (2012)
全文:HTML全文
The ATP-sensitive K(+) channels opener (K(ATP)CO), P1075 [N-cyano-N'-(1,1-dimethylpropyl)-N″-3-pyridylguanidine], has been shown to cause relaxation of various isolated animal and human blood vessels by opening of vascular smooth muscle ATP-sensitive K(+) (K(ATP)) channels. In addition to the well-known effect on the opening of K(ATP) channels, it has been reported that vasorelaxation induced by some of the K(ATP)COs includes some other K(+) channel subtypes. Given that there is still no information on other types of K(+) channels possibly involved in the mechanism of relaxation induced by P1075, this study was designed to examine the effects of P1075 on the rat renal artery with endothelium and with denuded endothelium and to define the contribution of different K(+) channel subtypes in the P1075 action on this blood vessel. Our results show that P1075 induced a concentration-dependent relaxation of rat renal artery rings pre-contracted by phenylephrine. Glibenclamide, a selective K(ATP) channels inhibitor, partly antagonized the relaxation of rat renal artery induced by P1075. Tetraethylammonium (TEA), a non-selective inhibitor of Ca(2+)-activated K(+) channels, as well as iberiotoxin, a most selective blocker of large-conductance Ca(2+) -activated K(+) (BK(Ca)) channels, did not abolish the effect of P1075 on rat renal artery. In contrast, a non-selective blocker of voltage-gated K(+) (K(V)) channels, 4-aminopyridine (4-AP), as well as margatoxin, a potent inhibitor of K(V)1.3 channels, caused partial inhibition of the P1075-induced relaxation of rat renal artery. In addition, in this study, P1075 relaxed contractions induced by 20 mM K(+) , but had no effect on contractions induced by 80 mM K(+). Our results showed that P1075 induced strong endothelium-independent relaxation of rat renal artery. It seems that K(ATP), 4-AP- and margatoxin-sensitive K(+) channels located in vascular smooth muscle mediated the relaxation of rat renal artery induced by P1075.© 2012 The Authors Basic & Clinical Pharmacology & Toxicology © 2012 Nordic Pharmacological Society.
结构式 | 名称/CAS号 | 分子式 | 全部文献 |
---|---|---|---|
![]() |
玛格斑蝎毒素
CAS:145808-47-5 |
C178H286N52O50S7 |
Evidence for aconitine-induced inhibition of delayed rectifi...
2011-10-28 [Toxicology 289(1) , 11-8, (2011)] |
Charybdotoxin and margatoxin acting on the human voltage-gat...
2012-05-03 [J. Phys. Chem. B 116(17) , 5132-40, (2012)] |
Contribution of Kv2.1 channels to the delayed rectifier curr...
2011-11-01 [Am. J. Physiol. Cell Physiol. 301(5) , C1186-200, (2011)] |
Potassium secretion by voltage-gated potassium channel Kv1.3...
2010-07-01 [Am. J. Physiol. Renal Physiol. 299(1) , F255-64, (2010)] |
Involvement of Kv1.3 and p38 MAPK signaling in HIV-1 glycopr...
2012-01-01 [Cell Death Dis. 3 , e254, (2012)] |
首页 |
期刊大全 |
MSDS查询 |
化工产品分类 |
生物活性化合物 |
关于我们 |
免责声明:知识产权问题请联系 service1@chemsrc.com
Copyright © 2024 ChemSrc All Rights Reserved