Beta-carotene scavenges triplet diacetyl generated by laser flash photolysis with a second-order rate constant of 9.1+/-0.9 x 10(9) M(-1) s(-1) in deaerated benzene at 20 degrees C. In the presence of oxygen diacetyl dissociates to generate acetylperoxyl radicals. It is demonstrated that diacetyl does not dissociate to any appreciable extent in the absence of oxygen. The acetylperoxyl radical is scavenged by beta-carotene with second-order rate constant 9.2+/-0.6 x 10(8) M(-1) s(-1) in aerated benzene at 20 degrees C to give an adduct between the acetylperoxyl radical and beta-carotene, whereas no evidence of oxidation of beta-carotene by the strongly oxidizing acetylperoxyl radical to give the beta-carotene radical cation is found. This adduct decays with first-order rate constant 1.35+/-0.16 x 10(3) s(-1) to give (presumably) a beta-carotene epoxide and the acetyloxyl radical.