Bernd Kaifler, Christian Büdenbender, Peter Mahnke, Matthias Damm, Daniel Sauder, Natalie Kaifler, and Markus Rapp
Index: 10.1364/OL.42.002858
Full Text: HTML
We report on the development of a pulsed neodymium-doped yttrium aluminum garnet (Nd:YAG) laser operating at a 1116 nm wavelength. Because the third harmonic is within a few gigahertz of the 372 nm absorption line of iron, this laser system represents an alternative to alexandrite lasers commonly used in iron fluorescence lidars. With our prototype, we achieved a 0.5 W at 372 nm wavelength and a 100 Hz pulse repetition frequency. As a proof of concept, we show iron density measurements, which have been acquired using the novel lidar transmitter.
|
End-pumped Nd:YVO4 laser with reduced thermal lensing via th...
2017-07-20 [10.1364/OL.42.002910] |
|
Mid-infrared beam splitter for ultrashort pulses
2017-07-20 [10.1364/OL.42.002918] |
|
Piston alignment for a segmented-aperture imaging system by ...
2017-07-20 [10.1364/OL.42.002922] |
|
Controllable single-photon nonreciprocal propagation between...
2017-07-20 [10.1364/OL.42.002914] |
|
Anomalous dispersion engineering of co-sputtering Ag-AZO hyb...
2017-07-19 [10.1364/OL.42.002894] |
Home | MSDS/SDS Database Search | Journals | Product Classification | Biologically Active Compounds | Selling Leads | About Us | Disclaimer
Copyright © 2026 ChemSrc All Rights Reserved