John M. Herbert, Marc P. Coons
Index: 10.1146/annurev-physchem-052516-050816
Full Text: HTML
Existence of a hydrated electron as a byproduct of water radiolysis was established more than 50 years ago, yet this species continues to attract significant attention due to its role in radiation chemistry, including DNA damage, and because questions persist regarding its detailed structure. This work provides an overview of what is known in regards to the structure and spectroscopy of the hydrated electron, both in liquid water and in clusters , the latter of which provide model systems for how water networks accommodate an excess electron. In clusters, the existence of both surface-bound and internally bound states of the excess electron has elicited much debate, whereas in bulk water there are questions regarding how best to understand the structure of the excess electron's spin density. The energetics of the equilibrium species e−(aq) and its excited states, in bulk water and at the air/water interface, are also addressed.
The Importance of Being Inconsistent
2017-05-02 [10.1146/annurev-physchem-052516-044957] |
Extending Quantum Chemistry of Bound States to Electronic Re...
2017-05-02 [10.1146/annurev-physchem-052516-050622] |
Roaming: A Phase Space Perspective
2017-05-02 [10.1146/annurev-physchem-052516-050613] |
Ultrafast X-Ray Crystallography and Liquidography
2017-05-02 [10.1146/annurev-physchem-052516-050851] |
Random-Phase Approximation Methods
2017-05-02 [10.1146/annurev-physchem-040215-112308] |
Home | MSDS/SDS Database Search | Journals | Product Classification | Biologically Active Compounds | Selling Leads | About Us | Disclaimer
Copyright © 2024 ChemSrc All Rights Reserved