Cement and Concrete Research 2018-01-17

Modelling of the sulfuric acid attack on different types of cementitious materials

Anaïs Grandclerc, Patrick Dangla, Marielle Gueguen-Minerbe, Thierry Chaussadent

Index: 10.1016/j.cemconres.2018.01.014

Full Text: HTML

Abstract

A chemical-reactive transport model is used to simulate the sulfuric acid attack of cement pastes based on ordinary Portland cement (CEM I), blended Portland cements (CEM III, CEM IV, and CEM V), and calcium aluminate cement (CAC). This model accounts for the dissolution of cement hydrates (portlandite, C-S-H, hydrogarnet), and the precipitation of deterioration products (ettringite and gypsum). Moreover, diffusion of the aqueous species in the pore space of the material is considered. With this model, the hydrate contents, the porosity, and the deterioration phase contents throughout a sulfuric acid attack are determined. Two indicators are defined to predict the service life of the cementitious materials: the deterioration depth and the dissolved calcium content. These two indicators show that calcium aluminate cement has a better resistance to sulfuric acid attack than that of Portland cements. This better resistance is mainly due to the partial dissolution of CAC hydrate as opposed to the total dissolutions of CH and C-S-H.