Helei Liu; Moxia Li; Xiao Luo; Zhiwu Liang; Raphael Idem; Paitoon Tontiwachwuthikul
Index: 10.1002/aic.16165
Full Text: HTML
In this work, Diethanolamine (DEA) was considered as an activator to enhance the CO2 capture performance of Monoethanolamine (MEA). The addition of DEA into MEA system was expected to improve disadvantages of MEA on regeneration heat, degradation, and corrosivity. To understand the reaction mechanism of blended MEA‐DEA solvent and CO2, 13C nuclear magnetic resonance (NMR) technique was used to study the ions (MEACOO‐, DEACOO–, MEA, DEA, MEAH+, DEAH+, , ) speciation in the blended MEA‐DEA‐CO2‐H2O systems with CO2 loading range from 0 to 0.7 mol CO2/mol amine at the temperature of 301 K. The different ratios of MEA and DEA (MEA: DEA = 2.0:0, 1.5:0.5, 1.0:1.0, and 0:2.0) were studied to comprehensively investigate the role of DEA in the system of MEA‐DEA‐CO2‐H2O. The results revealed that DEA performs the coordinative role at the low CO2 loading and the competitive role at high CO2 loading. Additionally, the mechanism was also proposed to interpret the reaction process of the blended solvent with CO2. © 2018 American Institute of Chemical Engineers AIChE J, 2018
Effect of fuel composition on NOx formation in high‐pressure...
2018-04-11 [10.1002/aic.16170] |
Morphology evolution and dynamics of droplet coalescence on ...
2018-04-10 [10.1002/aic.16169] |
Near‐UV activated, photostable nanophosphors for in vitro do...
2018-04-10 [10.1002/aic.16166] |
Design of active NiCo2O4‐δ spinel catalyst for abatement of ...
2018-04-06 [10.1002/aic.16162] |
The effect of mixing on Co‐precipitation and evolution of mi...
2018-04-06 [10.1002/aic.16168] |
Home | MSDS/SDS Database Search | Journals | Product Classification | Biologically Active Compounds | Selling Leads | About Us | Disclaimer
Copyright © 2024 ChemSrc All Rights Reserved