Abdullah Saleem, Shamsuzzaman Farooq, Iftekhar A. Karimi, Raja Banerjee
Index: 10.1016/j.compchemeng.2018.04.003
Full Text: HTML
Despite heavy insulation, the unavoidable heat leak from the surroundings into an LNG (Liquefied Natural Gas) storage tank causes boil-off-gas (BOG) generation. A comprehensive dynamic CFD simulation of an onshore full-scale LNG tank in a regasification terminal is presented. LNG is approximated as pure methane, the axisymmetric VOF (Volume of Fluid) model is used to track the vapor-liquid interface, and the Lee model is employed to account for the phase change including the effect of static pressure. An extensive investigation of the heat ingress magnitude, internal flow dynamics, and convective heat transfer gives useful insights on the boiling phenomena and a reliable quantification of the BOG. Surface evaporation is the governing boiling mechanism and nucleate boiling is unlikely with proper insulation. The critical wall superheat marking the transition from surface evaporation to nucleate boiling is estimated as 2.5-2.8 K for LNG.
Deep convolutional neural network model based chemical proce...
2018-04-11 [10.1016/j.compchemeng.2018.04.009] |
Reactive Scheduling of Crude Oil using Structure Adapted Gen...
2018-04-03 [10.1016/j.compchemeng.2018.04.005] |
Optimal Synthesis of Periodic Sorption Enhanced Reaction Pro...
2018-04-03 [10.1016/j.compchemeng.2018.04.004] |
Optimization-based approach for maximizing profitability of ...
2018-04-03 [10.1016/j.compchemeng.2018.04.001] |
Computer aided chemical product design - ProCAPD & tailor-ma...
2018-04-01 [10.1016/j.compchemeng.2018.03.029] |
Home | MSDS/SDS Database Search | Journals | Product Classification | Biologically Active Compounds | Selling Leads | About Us | Disclaimer
Copyright © 2024 ChemSrc All Rights Reserved