Longlong Wu, Xiao Wang, Geng Wang, Gang Chen
Index: 10.1038/s41467-018-03767-y
Full Text: HTML
Charged colloids at interfaces hold such a simple configuration that their interactions are supposed to be fully elucidated in the framework of classical electrostatics, yet the mysterious existence of attractive forces between these like-charged particles has puzzled the scientific community for decades. Here, we perform the in situ grazing-incidence small-angle X-ray scattering study of the dynamic self-assembling process of two-dimensional interfacial colloids. This approach allows simultaneous monitoring of the in-plane structure and ordering and the out-of-plane immersion depth variation. Upon compression, the system undergoes multiple metastable intermediate states before the stable hexagonal close-packed monolayer forms under van der Waals attraction. Remarkably, the immersion depth of colloidal particles is found to increase as the interparticle distance decreases. Numerical simulations demonstrate the interface around a colloid is deformed by the electrostatic force from its neighboring particles, which induces the long-range capillary attraction.
|
Genome-wide association study identifies susceptibility loci...
2018-04-09 [10.1038/s41467-018-03178-z] |
|
Endocycle-related tubular cell hypertrophy and progenitor pr...
2018-04-09 [10.1038/s41467-018-03753-4] |
|
Designable ultra-smooth ultra-thin solid-electrolyte interph...
2018-04-09 [10.1038/s41467-018-03466-8] |
|
Stimulus dependent diversity and stereotypy in the output of...
2018-04-09 [10.1038/s41467-018-03837-1] |
|
Contraction of basal filopodia controls periodic feather bra...
2018-04-09 [10.1038/s41467-018-03801-z] |
Home | MSDS/SDS Database Search | Journals | Product Classification | Biologically Active Compounds | Selling Leads | About Us | Disclaimer
Copyright © 2026 ChemSrc All Rights Reserved