Fudong Li, Honghao Hou, Jie Yin, Xuesong Jiang
Index: 10.1126/sciadv.aar5762
Full Text: HTML
Dynamic micro/nanopatterns provide an effective approach for on-demand tuning of surface properties to realize a smart surface. We report a simple yet versatile strategy for the fabrication of near-infrared (NIR) light–responsive dynamic wrinkles by using a carbon nanotube (CNT)–containing poly(dimethylsiloxane) (PDMS) elastomer as the substrate for the bilayer systems, with various functional polymers serving as the top stiff layers. The high photon-to-thermal energy conversion of CNT leads to the NIR-controlled thermal expansion of the elastic CNT-PDMS substrate, resulting in dynamic regulation of the applied strain (ε) of the bilayer system by the NIR on/off cycle to obtain a reversible wrinkle pattern. The switchable surface topological structures can transfer between the wrinkled state and the wrinkle-free state within tens of seconds via NIR irradiation. As a proof-of-concept application, this type of NIR-driven dynamic wrinkle pattern was used in smart displays, dynamic gratings, and light control electronics.
Active nematic emulsions
2018-04-01 [10.1126/sciadv.aao1470] |
Beyond triplet: Unconventional superconductivity in a spin-3...
2018-04-01 [10.1126/sciadv.aao4513] |
Time-resolved structural evolution during the collapse of re...
2018-04-01 [10.1126/sciadv.aao7086] |
Nonlinear fracture toughness measurement and crack propagati...
2018-04-01 [10.1126/sciadv.aao7202] |
Stimuli-responsive and on-chip nanomembrane micro-rolls for ...
2018-04-01 [10.1126/sciadv.aap8203] |
Home | MSDS/SDS Database Search | Journals | Product Classification | Biologically Active Compounds | Selling Leads | About Us | Disclaimer
Copyright © 2024 ChemSrc All Rights Reserved