Lei Liang, Qihong Chen, Jianming Lu, Wytse Talsma, Juan Shan, Graeme R. Blake, Thomas T. M. Palstra, Jianting Ye
Index: 10.1126/sciadv.aar2030
Full Text: HTML
Electrically controllable magnetism, which requires the field-effect manipulation of both charge and spin degrees of freedom, has attracted growing interest since the emergence of spintronics. We report the reversible electrical switching of ferromagnetic (FM) states in platinum (Pt) thin films by introducing paramagnetic ionic liquid (PIL) as the gating media. The paramagnetic ionic gating controls the movement of ions with magnetic moments, which induces itinerant ferromagnetism on the surface of Pt films, with large coercivity and perpendicular anisotropy mimicking the ideal two-dimensional Ising-type FM state. The electrical transport of the induced FM state shows Kondo effect at low temperature, suggesting spatially separated coexistence of Kondo scattering beneath the FM interface. The tunable FM state indicates that paramagnetic ionic gating could serve as a versatile method to induce rich transport phenomena combining field effect and magnetism at PIL-gated interfaces.
Active nematic emulsions
2018-04-01 [10.1126/sciadv.aao1470] |
Beyond triplet: Unconventional superconductivity in a spin-3...
2018-04-01 [10.1126/sciadv.aao4513] |
Time-resolved structural evolution during the collapse of re...
2018-04-01 [10.1126/sciadv.aao7086] |
Nonlinear fracture toughness measurement and crack propagati...
2018-04-01 [10.1126/sciadv.aao7202] |
Stimuli-responsive and on-chip nanomembrane micro-rolls for ...
2018-04-01 [10.1126/sciadv.aap8203] |
Home | MSDS/SDS Database Search | Journals | Product Classification | Biologically Active Compounds | Selling Leads | About Us | Disclaimer
Copyright © 2024 ChemSrc All Rights Reserved