Song Lin Zhang, Bu Yuan Guan, Hao Bin Wu, Xiong Wen (David) Lou
Index: 10.1007/s40820-018-0197-1
Full Text: HTML
Transition metal oxides are promising candidates for the high-capacity anode material in lithium-ion batteries. The electrochemical performance of transition metal oxides can be improved by constructing suitable composite architectures. Herein, we demonstrate a metal-organic framework (MOF)-assisted strategy for the synthesis of a hierarchical hybrid nanostructure composed of Fe2O3 nanotubes assembled in Co3O4 host. Starting from MOF composite precursors (Fe-based MOF encapsulated in a Co-based host matrix), a complex structure of Co3O4 host and engulfed Fe2O3 nanotubes was prepared by a simple annealing treatment in air. By virtue of their structural and compositional features, these hierarchical composite particles reveal enhanced lithium storage properties when employed as anodes for lithium-ion batteries (LIBs).
Formamidinium Lead Bromide Perovskite Microcrystals for Sens...
2018-03-05 [10.1007/s40820-018-0196-2] |
Layer-by-Layer Assembled Bacterial Cellulose/Graphene Oxide ...
2018-02-27 [10.1007/s40820-018-0195-3] |
Noninvasive Label-Free Detection of Cortisol and Lactate Usi...
2018-01-23 [10.1007/s40820-018-0193-5] |
A Review: Enhanced Anodes of Li/Na-Ion Batteries Based on Yo...
2018-01-17 [10.1007/s40820-018-0194-4] |
Towards Enhancing Wearability and Fashion of Wearable Superc...
2018-01-17 [10.1007/s40820-018-0191-7] |
Home | MSDS/SDS Database Search | Journals | Product Classification | Biologically Active Compounds | Selling Leads | About Us | Disclaimer
Copyright © 2024 ChemSrc All Rights Reserved