Wayz R. Khan, Nick Murdakes, Chris J. Cornelius
Index: 10.1016/j.polymer.2018.03.028
Full Text: HTML
Multi-block and random quaternary ammonium poly (arylene ether sulfone) copolymer ionomers were synthesized using sequential reactions. Ionomer film processing involved two separate methods: heterogeneous-conversion and solution-casting a pseudo-solution. Film hydroxyl conductivity, water swelling, and tensile strength were dependent upon the hydrophilic and hydrophobic block-length. 1H nuclear magnetic resonance was used to evaluate brominated multi-block poly (arylene ether sulfone) composition, degree of functionalization (DF), and ion-exchange capacity (IEC). In general, multi-block ionomer hydroxyl conductivity was greater than its randomly functionalized counterpart at a similar IEC. Multi-block ionomer films with largest hydrophilic block length exhibited a hydroxide conductivity of 49.8 mS/cm. However, the equivalent random copolymer's conductivity was 1.02 times lower with a water uptake of 223 wt%, which were 190% higher than its multi-block counterpart. This was attributed to ion-clustering improvements, which is not present in a random ionomer. Equivalent copolymer ionomers had a percolation threshold associated with excessive swelling when its IEC exceeded 2.02 meq/g. In contrast to the random ionomer, the maximum swelling observed for the multi-block copolymers was 33.6% at an IEC of 2.86 meq/g. This swelling suppression at high IEC was attributed to the sequential hydrophilic-hydrophobic block architecture. Moreover, the solution-cast multi-block ionomer was found to possess the highest toughness of 1185 × 104 J/m3, which was 237% greater than its heterogeneous counterpart. These results suggest that block length and ionomer processing play a critical role in controlling swelling, improving mechanical strength, and enhancing ion transport.
|
Effect of hydrogen bonding on the liquid crystalline behavio...
2018-04-10 [10.1016/j.polymer.2018.04.028] |
|
Thermal transitions in semi-crystalline polymer thin films s...
2018-04-04 [10.1016/j.polymer.2018.04.017] |
|
Chemical recycling of poly(bisphenol A carbonate): 1,5,7-Tri...
2018-04-04 [10.1016/j.polymer.2018.04.015] |
|
Simultaneous WAXS/SAXS study on semi-crystalline Poly(ethyle...
2018-04-04 [10.1016/j.polymer.2018.04.018] |
|
Gallol-containing homopolymers and block copolymers: ROMP sy...
2018-04-04 [10.1016/j.polymer.2018.04.016] |
Home | MSDS/SDS Database Search | Journals | Product Classification | Biologically Active Compounds | Selling Leads | About Us | Disclaimer
Copyright © 2024 ChemSrc All Rights Reserved