Priscila A.C. Valadão, Matheus P.S.M. Gomes, Bárbara C. Aragão, Hermann A. Rodrigues, Jéssica N. Andrade, Rubens Garcias, Julliane V. Joviano-Santos, Murilo A. Luiz, Wallace L. Camargo, Lígia A. Naves, Christopher Kushmerick, Walter L.G. Cavalcante, Márcia Gallacci, Itamar C.G. de Jesus, Silvia Guatimosim, Cristina Guatimosim
Index: 10.1016/j.neuint.2018.03.007
Full Text: HTML
Huntington's disease (HD) is an autosomal dominant neurodegenerative disease characterized by chorea, incoordination, and psychiatric and behavioral symptoms. The leading cause of death in HD patients is aspiration pneumonia, associated with respiratory dysfunction, decreased respiratory muscle strength and dysphagia. Although most of the motor symptoms are derived from alterations in the central nervous system, some might be associated with changes in the components of motor units (MU). To explore this hypothesis, we evaluated morphofunctional aspects of the diaphragm muscle in a mouse model of HD (BACHD). We showed that the axons of the phrenic nerves were not affected in 12-months-old BACHD mice, but the axon terminals that form the neuromuscular junctions (NMJs) were more fragmented in these animals in comparison with the wild-type mice. In BACHD mice, the synaptic vesicles of the diaphragm NMJs presented a decreased exocytosis rate. Quantal content and quantal size were smaller and there was less synaptic depression whereas the estimated size of the readily releasable vesicle pool was not changed. At the ultrastructure level, the diaphragm NMJs of these mice presented fewer synaptic vesicles with flattened and oval shapes, which might be associated with the reduced expression of the vesicular acetylcholine transporter protein. Furthermore, mitochondria of the diaphragm muscle presented signs of degeneration in BACHD mice. Interestingly, despite all these cellular alterations, BACHD diaphragmatic function was not compromised, suggesting a higher resistance threshold of this muscle. A putative resistance mechanism may be protecting this vital muscle. Our data contribute to expanding the current understanding of the effects of mutated huntingtin in the neuromuscular synapse and the diaphragm muscle function.
Repeated peripheral administration of lipidized prolactin-re...
2018-03-27 [10.1016/j.neuint.2018.03.013] |
Current perspective of mitochondrial biology in Parkinson's ...
2018-03-14 [10.1016/j.neuint.2018.03.001] |
Deletion of serine racemase confers D-serine –dependent resi...
2018-03-14 [10.1016/j.neuint.2018.03.008] |
X-ray irradiation induces disruption of the blood–brain barr...
2018-03-12 [10.1016/j.neuint.2018.03.002] |
Investigating the metabolic alterations in a depressive-like...
2018-03-09 [10.1016/j.neuint.2018.03.005] |
Home | MSDS/SDS Database Search | Journals | Product Classification | Biologically Active Compounds | Selling Leads | About Us | Disclaimer
Copyright © 2024 ChemSrc All Rights Reserved