Fengzi Ling, Shuai Li, Jie Wei, Kai Liu, Yanmei Wang, Bing Zhang
Index: 10.1063/1.5024255
Full Text: HTML
Time-resolved photoelectron imaging is employed to investigate the relaxation dynamics of the lowest two excited electronic states S1(ππ*) and S2(π3s/πσ*) in 2,4-difluoroaniline (24DFA). As the S1(ππ*) state is populated directly following 289 nm excitation, the population undergoes ultrafast intramolecular vibrational redistribution on a 540 fs time scale, followed by efficient intersystem crossing from S1(ππ*) to the triplet state within 379 ps, and the subsequent slower deactivation process of the triplet state. For excitation to the S2(π3s/πσ*) state at 238 nm, the population probably bifurcates into two decay channels. The dominant channel with 84 fs involves ultrafast internal conversion to the S1(ππ*) state, from which it relaxes to the electronic ground state on a 116 ps time scale. The other appears to involve motion along the S2(π3s/πσ*) potential energy surface. Our data also determine experimentally the electronic energies of S2(π3s/πσ*), S3(ππ*), and several Rydberg states in 24DFA.
Communication: A coil-stretch transition in planar elongatio...
2018-04-13 [10.1063/1.5026792] |
Communication: Adaptive boundaries in multiscale simulations
2018-04-13 [10.1063/1.5025826] |
High pressure synthesis and stability of cobalt hydrides
2018-04-13 [10.1063/1.5026535] |
Vapor phase nucleation of the short-chain n-alkanes (n-penta...
2018-04-13 [10.1063/1.5023567] |
Investigations of the valence-shell excitations of molecular...
2018-04-13 [10.1063/1.5021695] |
Home | MSDS/SDS Database Search | Journals | Product Classification | Biologically Active Compounds | Selling Leads | About Us | Disclaimer
Copyright © 2024 ChemSrc All Rights Reserved