Stefan Schünemann; Harun Tüysüz
Index: 10.1002/ejic.201800078
Full Text: HTML
We employ a colloidal crystal templating approach to fabricate ordered macro‐mesoporous CsPbBr3 and demonstrate its superior photocatalytic activity compared to its non‐templated counterpart in the degradation of an organic pollutant. The presented templating approach reduces charge carrier diffusion pathways and increases the surface area of the halide perovskite. Furthermore, the crystal structure, and the morphology of the templated halide perovskite are stable under photocatalytic conditions, which results in a constant photocatalytic performance in recycling experiments. The presented concept is applicable for other photocatalytic reactions and can thus advance the novel field of halide perovskites in photocatalysis.
Increased Efficiency of Dye‐Sensitized Solar Cells by Incorp...
2018-04-06 [10.1002/ejic.201800123] |
Exploring Synthetic Routes to Heteroleptic UIII, UIV, and Th...
2018-04-06 [10.1002/ejic.201800036] |
[Co(MeTAA)] Metalloradical Catalytic Route to Ketenes via Ca...
2018-04-06 [10.1002/ejic.201800101] |
Copper(I)–Dioxygen Reactivity in the Isolated Cavity of a Na...
2018-04-06 [10.1002/ejic.201800029] |
Insight into Solvent Coordination of an Iron Porphyrin Hydro...
2018-03-25 [10.1002/ejic.201800040] |
Home | MSDS/SDS Database Search | Journals | Product Classification | Biologically Active Compounds | Selling Leads | About Us | Disclaimer
Copyright © 2024 ChemSrc All Rights Reserved